Acceleration Schemes of the Discrete Velocity Method: Gaseous Flows in Rectangular Microchannels
نویسندگان
چکیده
The convergence rate of the discrete velocity method (DVM), which has been applied extensively in the area of rarefied gas dynamics, is studied via a Fourier stability analysis. The spectral radius of the continuum form of the iteration map is found to be equal to one, which justifies the slow convergence rate of the method. Next the efficiency of the DVM is improved by introducing various acceleration schemes. The new synthetic-type schemes speed up significantly the iterative convergence rate. The spectral radius of the acceleration schemes is also studied and the so-called H1 acceleration method is found to be the optimum one. Finally, the two-dimensional flow problem of a gas through a rectangular microchannel is solved using the new fast iterative DVM. The number of required iterations and the overall computational time are significantly reduced, providing experimental evidence of the analytic formulation. The whole approach is demonstrated using the BGK and S kinetic models.
منابع مشابه
Flow of gaseous mixtures through rectangular microchannels driven by pressure, temperature, and concentration gradients
The flow of binary gaseous mixtures through rectangular microchannels due to small pressure, temperature, and molar concentration gradients over the whole range of the Knudsen number is studied. The solution is based on a mesoscale approach, formally described by two coupled kinetic equations, subject to diffuse scattering boundary conditions. The model proposed by McCormack substitutes the com...
متن کاملNumerical Study of Non-Newtonian Flow Through Rectangular Microchannels
A numerical investigation was carried out to solve the flow dimensionless partial differential equations through rectangular microchannels. A purely viscous power law <span style="font-size: 10pt; colo...
متن کاملTime-periodic Electroosmotic Flow of Non-newtonian Fluids in Microchannels
The alternating current electroosmotic flow of a non-Newtonian power-law fluid is studied in a circular microchannel. A numerical method is employed to solve the non-linear Poisson-Boltzmann and the momentum equations. The main parameters which affect the flow field are the flow behavior index, the dimensionless zeta potential and the dimensionless frequency. At very low dimensionless frequenci...
متن کاملInvestigation of electrokinetic mixing in 3D non-homogenous microchannels
A numerical study of 3D electrokinetic flows through micromixers was performed. The micromixers considered here consisted of heterogeneous rectangular microchannels with prescribed patterns of zeta-potential at their walls. Numerical simulation of electroosmotic flows within heterogeneous channels requires solution of the Navier-Stokes, Ernest-Plank and species concentration equations. It is kn...
متن کاملSimulations of 3D Dynamics of Microdroplets: A Comparison of Rectangular and Cylindrical Channels
In this paper, several numerical simulations of diphasic flows in microchannels are presented. The flow in both cylindrical and rectangular channels is considered. The aim is to compute the shape of the droplets and the velocity fields inside and outside the droplets and to quantify the influence of the geometry. The Level Set method is used to follow the interface between the fluids.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 25 شماره
صفحات -
تاریخ انتشار 2003